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ABSTRACT
While the conspicuous visual displays of anoles have been studied in great depth, the
possibility that these lizards may also interact through chemical signalling has received
hardly any consideration. In this study, we observed the behaviour of male brown
anoles (Anolis sagrei) when introduced into an environment previously inhabited by
female conspecifics, and compared it to when they were introduced into an untreated
environment. The males in our tests exhibited significantly more elaborate display
behaviour (i.e., greater number of dewlap extensions and head-nods) and a significantly
greater number of tongue extrusions while in the cage formerly occupied by females
than when placed in the untreated, control cage. The absolute numbers of tongue
extrusions, however, were relatively low in comparison to average tongue-flick rates
of ‘true’ chemically-oriented lizards. Our results strongly suggest that the males were
capable of detecting chemical cues left behind by the females. These observations
provide the first evidence of intersexual chemo-sensation in an anole lizard.

Subjects Animal Behavior, Evolutionary Studies, Zoology
Keywords Chemical communication, Dactyloidae, Dewlap extensions, Display behaviour,
Iguania, Semiochemicals, Signalling, Squamata, Tongue-flick

INTRODUCTION
The sensory modalities through which animals perceive the world vary greatly among
taxa. Among squamate lizards, for instance, the ‘Iguania’ (Agamidae, Chamaeleonidae and
Iguanidae s.l.) are often regarded as ‘visually-oriented,’ while the ‘Scleroglossa’ (all other
families) are dubbed ‘chemically-oriented’ (Schwenk, 1993; Schwenk, 1994; Vidal & Hedges,
2009). Such partition is clearly flawed in the sense that many ‘chemically-oriented’ lizard
species also have excellent eyesight (e.g., Pérez I de Lanuza & Font, 2014;Martin et al., 2015)
and frequently use visual displays (e.g., Cooper et al., 2003; Font et al., 2012). Still, it has
long been thought that the ‘visually-oriented’ Agamidae, Chamaeleonidae and Iguanidae
have poor chemosensory abilities (Pratt, 1948; Evans, 1961; Alberts, Pratt & Phillips, 1992).
This conviction accords well with the conventional view of squamate phylogenetic history,
in which the tongue played a key role. It was believed that Scleroglossa developed a forked
tongue and a sophisticated system for vomerolfaction once they acquired the ability to
capture prey by the use of jaws (Schwenk, 1993; Schwenk, 1995). Instead, it is now said that
the Iguania retained the putative ancestral conditions of lingual prey prehension, visual
hunting, and a rudimentary vomeronasal chemosensory system (Vidal & Hedges, 2009).

More recently, several studies have shown that chemical cues are nonetheless important
to iguanian lizards (Cooper, 2002). For instance, food odours elicit increased tongue-flick
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rates in Dipsosaurus dorsalis, Pogona viticeps, Ctenosaura similis and Sauromalus ater
(Cooper & Alberts, 1990; Cooper, 2000; Cooper & Flowers, 2000; Cooper & Lemos-Espinal,
2001), and Sceloporus jarrovi, S. occidentalis and Iguana iguana use chemical cues in
intraspecific communication (Bissinger & Simon, 1981; Duvall, 1979;Werner et al., 1987).

While a possible role for vomerolfaction has thus been accepted for other iguanid groups,
chemoreception is generally considered deficient in members of the genus Anolis. Pratt
(1948) considered the olfactory chamber of Anolis ‘poorly developed’ and ‘almost non-
sensory,’ their Jacobson’s organ ‘reduced and completely non-sensory.’ Armstrong, Gamble
& Goldby (1953) believed that the vomeronasal organs of Anolis species were ‘functional,’
but at the same time dubbed them ‘microsmatic,’ because the nasal sac, its epithelium
and the vomeronasal organ are diminutive. Accordingly, Greenberg (1982) found that the
lateral cortex, the main cortical target of olfactory sensation, was ‘virtually vestigial’ in
Anolis. The accessory olfactory bulb, target of the vomeronasal organ, is also reduced and
its subcortical target was deemed absent (Greenberg, 1982). Behavioural experiments on A.
carolinensis failed to find any evidence that this species utilizes chemical information during
prey selection (Curio & Mobius, 1978; Jaslow & Pallera, 1990), for assessing intraspecific
opponents (Forster et al., 2005;Gravelle & Simon, 1980), or inmate choice (Orrel & Jenssen,
2002). These observations have discouraged further work on chemo-sensation in Anolis,
and researchers have instead focussed on the prominent and elaborate visual displays
exhibited by these animals (dewlap extensions, push-ups, head-nods etc.).

However, several lines of evidence suggest a possible role for chemical cues in Anolis
life history. First, individuals of the species do tongue-flick (Greenberg, 1985; Greenberg,
1993), and even more so in novel environments or when confronted with conspecifics
of the same sex (Greenberg, 1993). Second, Gabe & Saint-Girons (1965) have described
cloacal glands in the males of three Anolis species, which may function in the production
of semiochemicals. Finally, in a recent comparative study of the sodefrin precursor-like
factor (SPF) pheromone system, Janssenswillen et al. (2014) found 19 duplicates of a gene
implicated in the production of pheromones in A. carolinensis.

In this study, we observed the behaviour and tongue-flick rates in male brown anoles
(Anolis sagrei, Fig. 1) when introduced into an environment previously inhabited by
female conspecifics, and compared it to the response when in an untreated environment.
Differential results provide valuable information on the intersexual chemosensory ability
of Anolis.We predict that if male anoles are capable of detecting chemical cues left behind
by the females, they will exhibit higher tongue-flick rates and more elaborate display
behaviour in the experimental environment than in the control.

METHODS AND MATERIALS
Animals and their maintenance
We purchased 14 male and four female brown anoles (Anolis sagrei) —which were
originally caught in Florida (USA)—via the pet trade (Fantasia Reptiles, Belgium, license
HK51101419). Males and females were housed separately, with a maximum of four
individuals per terrarium (100×40×50 cm). The female cage was isolated from the cages
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Figure 1 Brown anole (Anolis sagrei). Photograph of a male brown anole extending its dewlap. Picture
taken by Steven De Decker in Santa Clara, Cuba (2012).

containing males in order to avoid any visual or chemical contact between them. Each
cage contained a layer of peat bedding covered with banana-leafs and several wooden
perches (length 40 cm; diameter 3 cm). A 60-watt bulb suspended above one end of the
terrarium provided heat and light (12 h/d). Lizards were hand-sprayed with water every
other day, had access to fresh water at all times, and were fed crickets (Acheta domesticus)
three times a week. The lizards were housed in one room whilst the experiments took place
in a separate room. All work was carried out in accordance with the University of Antwerp
animal welfare standards and protocol (ECD 2011-64).

Experimental design
Our experimental procedure consisted of introducing male anoles into two distinct
unfamiliar environments: (i) a control and (ii) an experimental terrarium. Both glass
terraria (50×50×50 cm) were completely closed and contained a layer of peat bedding,
two identical wooden perches, and a 60-watt light bulb. We took great care to ensure that
the appearance of both cages was as similar as possible. One side of the cage was coated with
a dark window film (JohnsonWindow Films), which filters light transmission. The coating
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enabled us to observe the lizard in the test cage without being visually noticeable to the lizard
itself.We chose thismethod instead of a one-waymirror, asDriessens, Vanhooydonck & Van
Damme (2013) reported that a mirror could affect the behaviour of brown anole males. All
other sides of the cage were covered and taped with white paper to make the terrarium non-
transparent, and hence to avoid any kind of external visual stimuli. After every observation,
we removed the bedding, washed the terrarium and perches with odourless detergent
and afterwards with ethanol (70%), and left it to dry. The bedding was replaced between
subsequent trails in order to remove any chemical stimuli left by lizards from the previous
trial. All observations took place in a separate room from where the lizards were housed.

The control set-up consisted of an untreated terrarium, whereas the experimental
terrarium was formerly inhabited by four female conspecifics. Prior to observation, all
females were translocated from their home cage to the experimental terrarium, where
they were housed for a minimum of 8 h. Females were removed from the experimental
terrarium to their home cage 5 min before each test; so the male lizards were only exposed
to the chemicals left by females, not to visual or auditory female stimuli. The researcher
wore fresh disposable gloves whilst handling the lizards, in order to avoid contamination
with human odours. Everymale was exposed to the control and experimental terrarium in a
randomized order, and tested only once a day. The use of terraria (control vs. experimental)
was also randomized. Thus, all 14 males were observed twice: once in the control terrarium
and once in the experimental terrarium (so, n= 28).

All experiments were conducted in the reproductive season of A. sagrei (August–
September 2015) and the observations were made during the lizards’ peak activity hours
(10:00-16:00).

Observations
Observations started approximately 10 s after the male lizard’s introduction into the terrar-
iumand lasted for 20min. The lizard’s behaviourwasmonitored and scored online using the
software JWatcher (version 1.0; Blumstein & Daniel, 2007). Following Driessens, Vanhooy-
donck & Van Damme (2013) we distinguished between three visual display types: dewlap
extensions, head-nods, and push-ups. A dewlap extension was defined as one complete
extension and retraction of the dewlap, a head-nod as one single up and down movement
that involved only the head, and a push-up as one single up and down movement of the
whole body caused by flexion of only the front legs or all four legs. The number of display
events was scored, and the time duration of exhibiting display behaviour was recorded.
As a measure for exploratory behaviour we scored the number of tongue extrusions
and total duration (in seconds) of locomotor behaviour (walking, running, jumping).

Statistics
To examine differences in behavioural states and events we used generalized estimating
equations with repeated measures. The analyses were run with ‘‘treatment’’ (control vs.
experimental) as within-subject variable. Display events and tongue extrusion counts were
assumed to follow a Poisson distribution (loglinear model type). Time duration data were
transformed (square root) to ensure normality (Shapiro—Wilk’s test with W ≥ 0.95). All
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statistical analyses were conducted in SPSS v. 22.0 (Chicago, IL, USA) and P < 0.05 was
considered statistically significant.

RESULTS
Male A. sagrei showed significantly more dewlap extensions (Wald χ2

= 4.817, P = 0.028)
and head-nods (Wald χ2

= 7.026, P = 0.008) in the experimental female cage, than in
the untreated control cage (Fig. 2A). No difference was found in the number of push-ups
(Wald χ2

= 0.370, P = 0.543). The average amount of time spent displaying was highest
in the experimental cage (Wald χ2

= 10.770, P = 0.001; Fig. 2B). Males also extruded their
tongue more often (Wald χ2

= 13.440, P < 0.001) and showed more active locomotor
behaviour (i.e., sum of the total time walking, running and jumping: Wald χ2

= 69.477,
P < 0.001) in the experimental cage compared to the control cage.

DISCUSSION
In our tests, male Anolis sagrei lizards exhibited more display and exploratory behaviour
when introduced into a novel environment previously inhabited by female conspecifics,
than when placed in a novel, untreated cage. Our results strongly suggest that the males
were capable of picking up chemical cues left by the females. Our observations constitute
the first evidence of intersexual chemo-sensation in an anole lizard.

One of the reasons why chemical communication has been understudied inAnolis, is that
anoles do not possess epidermal glands (Mayerl, Baeckens & Van Damme, 2015). Epidermal
gland secretions are generally considered the main source of chemicals involved in lizard
chemical communication (Martín & López, 2014; Martín & López, 2015). However, such
glands are also lacking in other lizard groups, such as anguids and skinks that nevertheless
use semiochemical cues. In these groups, semiochemicals are produced in the cloaca or the
integument (Duvall, Herskowitz & Trupiano-Duvall, 1980; Gonzalo et al., 2004; Head et al.,
2008; Scott et al., 2015). For example, lipid fractions of the urodeal glands of female broad-
headed skink (Plestiodon laticeps) elicit courtship behaviour in conspecific males (Cooper
& Garstka, 1987), and cloacal glands of both sexes produce species-specific semiochemicals
(Cooper, Garstka & Vitt, 1986; Cooper & Vitt, 1987; Trauth et al., 1987). Also, male P.
laticeps are able to discriminate between sexes, based on skin chemicals alone (Cooper &
Vitt, 1984a; Cooper & Vitt, 1984b). Cloacal glands have been described in males of Anolis
cristatellus, A. evermanni and A. pulchellus (Gabe & Saint-Girons, 1965). Unfortunately, no
information is available on the presence/absence of cloacal glands in sexually active female
anoles (D Sever & D Siegel, pers. comm., 2015). Still, it is highly likely that while moving
around, females passively deposited chemicals of various origins (cloacal/urodeal secretion,
faecal excrements, skin fragments) on the substrate, which were later perceived by male
(vomer)olfaction.

Another possible explanation for the dearth of studies on Anolis chemo-sensation
is their patent use of visual displays. The anole dewlap has become a model system
in communication biology (Jenssen, 1977; Carpenter, 1978; Nicholson, Harmon & Losos,
2007). The attractiveness of the dewlap as a visual signalling device may have diverted
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Figure 2 Display behaviour and exploratory activity in male Anolis sagreiwhen introduced in an un-
treated control terrarium (white bars) and an experimental terrarium previously inhabited by con-
specific females (black bars). (A) Mean display frequency and tongue extrusion (TE) rate, as counts per
minute. Display events include dewlap extensions (DE), head-nods (HN) and push-ups (PU). (B) Mean
amount of time spent (in seconds) on display behaviour and locomotor activity during the 20 min obser-
vation trials. Error bars represent SE, and asterisks represent significant differences: ∗P < 0.01.
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attention away from other sensory channels. Admittedly, although A. sagrei males in the
cages labelled with female odours displayed significantly more than males in untreated
cages, the absolute numbers of displays shown were low compared to those exhibited
by males in visual contact with females. Driessens, Vanhooydonck & Van Damme (2013)
observed male A. sagrei in captive conditions similar to ours but in visual contact with
female conspecifics, and reported dewlap extension rates nearly nine times higher than
those recorded in this study (counts per minute, cpm: x̄ = 0.25, SE = 0.07, n= 14 vs.
x̄ = 2.19, SE = 0.35, n= 27). Possibly, males in our experiments were awaiting visual
confirmation of the chemical signals before engaging in full visual signalling displays
(which may be costly, Leal, 1999; Simon, 2007; Lailvaux, Gilbert & Edwards, 2012).

A third observation that plausibly discouraged former researchers to study
chemosignalling in Anolis, is their low baseline rate of tongue extrusions. In our tests,
male anoles extruded their tongue on average 0.21 ± 0.02 cpm in the control cage.
Comparing this rate to tongue-flick rates of ‘true’ chemical-oriented lizards, demonstrates
the low tongue-flick rate in anoles all the more (Table 1). Verwaijen & Van Damme (2007)
observed relative high tongue-flick rates in several lacertid species, such as Podarcis muralis
(4.60± 0.50 cpm), Psammodromus algirus (4.20± 0.60 cpm), Takydromus sexlineatus (3.30
± 0.50 cpm) and Acanthodactylus erythrurus (2.60 ± 0.50 cpm). Bissinger & Simon (1979)
observed the vomerolfactory behaviour of lizards of different taxa, in semi-natural zoo
conditions. Their results suggest that only cordylids (e.g., Smaug warreni: 0.19± 0.01 cpm)
have lower average tongue-flick rates than the anoles in our study. Even in comparison to
other iguanids, brown anoles score fairly low (e.g., Ctenosaura clarki: 0.43 ± 0.18 cpm).
Regardless of anoles baseline rate, our tests do show a significant increase in tongue
extrusion rate when confronted with female odours.

While the change in tongue extrusion rates strongly implies the use of anole
vomerolfaction, we cannot rule out the use of olfaction in which (only) volatile chemicals
are processed by the nasal organs (Cooper & Burghardt, 1990), as Gabe & Saint-Girons
(1976) have suggested the anole olfactory epithelium to be more developed then their
vomeronasal organ. Dactyloidae also possess large numbers of tongue taste buds, but the
use of lingual gustation in squamate chemosensory discrimination is said to be ‘inadequate’
(Cooper, 1997). Although for the human eye, visual hints of the former presence of females
were not present, we cannot rule out the possibility that males perceived the females
visually, rather than chemically. For instance, it is known that the femoral gland secretion
of the iguanid Dipsosaurus dorsalis strongly absorb ultraviolet light, which enables these
femoral deposits to act as visual markers for locating low volatility semiochemicals at far
range (Alberts, 1989).

The observation that males respond towards female chemical cues implies signalling
multimodality in Anolis sagrei. Moreover, the fact that both chemical and visual
stimuli (Driessens, Vanhooydonck & Van Damme, 2013; Driessens et al., 2015) elicit similar
behaviour in male conspecifics, suggest that both signalling channels broadcast analogous
information. Repeating the same message in different ways can enhance or ensure
information transmission (Johnstone, 1996; Rowe, 1999).
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Table 1 Tongue-flick rates in lizards.Overview of baseline tongue-flick rates in lizards of various taxa,
observed in semi-natural settings—reported in counts per minute (cpm). Means and standard errors (SE)
are shown.

Family Species Baseline tongue-flick rate
Mean± SE (cpm)

Cordylidaea Smaug warreni 0.19± 0.01
Dactyloidaeb Anolis sagrei 0.21± 0.02
Phrynosomatidaea Sceloporus jarrovi 0.27± 0.12
Iguanidaea Ctenosaura clarki 0.43± 0.18
Gerrhosauridaea Zonosaurus madagascariensis 1.21± 0.31
Lacertidaec Acanthodactylus aureus 2.10± 0.30
Lacertidaec Acanthodactylus erythrurus 2.60± 0.50
Lacertidaec Takydromus sexlineatus 3.30± 0.50
Lacertidaec Psammodromus hispanicus 3.60± 0.50
Lacertidaec Psammodromus algirus 4.20± 0.60
Lacertidaec Podarcis peloponnesiacus 4.20± 0.50
Lacertidaec Zootoca vivipara 4.30± 0.60
Lacertidaec Podarcis muralis 4.60± 0.50
Scincidaea Tiliqua scincoides 5.51± 0.96
Helodermatidaea Heloderma suspectum 7.85± 0.81
Teiidaea Aspidoscelis exsanguis 11.95± 1.99

Notes.
aBissinger & Simon (1979).
bThis study.
cVerwaijen & Van Damme (2007).

In summary, our study provides the first reported evidence of intersexual-induced
chemo-sensation in anoles. The chemical cues of these lizards endeavours to persist in
absence of the signaller, providing information on the former presence of conspecifics in a
given environment.
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