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Abstract

The skin surface structure of squamate reptiles varies greatly among species, likely because it plays a key role in

a range of tasks, such as camouflage, locomotion, self-cleaning, mitigation of water loss and protection from

physical damage. Although we have foundational knowledge about squamate skin morphology, we still know

remarkably little about how intraspecific variation in skin surface structure translates to functional variation.

This gap in our understanding can be in part traced back to: (i) our lack of knowledge on how body size

determines skin surface structure; and (ii) the lack of means to perform high-throughput and detailed analysis

of the three-dimensional (3D) anatomy of reptilian skin surfaces in a non-destructive manner. To fill this gap,

we explored the possibilities of a new imaging technique, termed gel-based stereo-profilometry, to visualize

and quantify the 3D topography of reptilian skin surface structure. Using this novel approach, we investigated

intra-specific and intra-individual variation in the skin surface morphology of a focal lizard species, Anolis

cristatellus. We assessed how various characteristics of surface topography (roughness, skew and kurtosis) and

scale morphology (area, height, width and shape) scale with body size across different body regions. Based on

an ontogenetic series of A. cristatellus males, we show that skin roughness increases with body size. Skin

patches on the ventral body region of lizards were rougher than on the dorsum, but this was a consequence of

ventral scales being larger than dorsal scales. Dorsal surface skew and kurtosis varied with body size, but

surfaces on the ventral skin showed no such relationship. Scale size scaled isometrically with body size, and

while ventral scales differed in shape from dorsal scales, scale shape did not change with ontogeny. Overall,

this study demonstrates that gel-based stereo-profilometry is a promising method to rapidly assess the 3D

surface structure of reptilian skin at the microscopic level. Additionally, our findings of the explanatory power

of body size on skin surface diversity provide a foundation for future studies to disentangle the relationships

among morphological, functional and ecological diversity in squamate reptile skin surfaces.
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Introduction

Reptiles evolved a specialized keratinous integument that

played a crucial role in their successful colonization of ter-

restrial habitats during the Mesozoic (Landmann, 1986; Ali-

bardi, 2003). The skin surface structure of squamate

reptiles, in particular, has since evolved to be exceptionally

diverse, with extensive morphological variability, even

among closely related species (Arnold, 2002; Broeckhoven

et al. 2018). In addition to its structural complexity across

multiple length scales (Arnold, 2002; Gower, 2003; Schmidt

& Gorb, 2012; Spinner et al. 2013a,b; Bucklitsch et al. 2016;

Allam et al. 2019), squamate skin is also functionally diverse

(Gorb, 2005, 2009), playing important roles in camouflage

(Spinner et al. 2013a), communication (Cuervo et al. 2016),

locomotion (Irschick et al. 1996; Autumn et al. 2000; Russell

& Johnson, 2007; Baum et al. 2014a,b), self-cleaning (Wat-

son et al. 2015), mitigation of water loss (Dmi’el, 2001) and

protection from physical damage (Broeckhoven et al. 2015).
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For any of these specific functions, however, the evolution

of an ‘optimal’ skin surface would depend on the particular

environmental and ecological constraints imposed on the

animal (Losos, 2011; Irschick & Higham, 2016; Riedel et al.

2019) — for example, in arid environments, natural selec-

tion might favor skin surfaces that limit water loss (Broeck-

hoven et al. 2018), and an arboreal lifestyle may drive the

evolution of skin surfaces that exhibit increased adhesive

forces (Losos, 1990). Moreover, environmental factors may

not drive skin surface specialization of all body regions in a

similar way. For example, an arboreal lifestyle will primarily

affect the skin surfaces of body regions involved in locomo-

tion (e.g. toepads in geckos; Russell & Johnson, 2007; John-

son et al. 2009). While valuable biomechanical (Spinner

et al. 2013a,b; Baio et al. 2015) and morphological studies

(Russell, 2006; Schmidt & Gorb, 2012; Riedel et al. 2015)

have contributed to our knowledge of functional morphol-

ogy and diversity in squamate integuments, we still lack an

understanding of how skin surfaces vary in three-dimen-

sions (3D) across an individual and how these surfaces

change with body size. More importantly, we also lack the

basic means of assessing the metrics of reptile skin in a

high-throughput fashion for understanding how their form

and function vary across a wide range of different squa-

mate species.

When studying trait variation, both within and among

species, it is critical to identify how much of this observed

variability is dictated by body size (Schmidt-Nielsen, 1984;

Spence, 2009). Information on the degree of size-depen-

dent variation in skin surface structure can be used to iden-

tify how much of the observed skin diversity is the result of

local adaptation or is simply the byproduct of growth. As

such, knowledge of the explanatory power of body size on

squamate surface diversity provides the foundation for

future studies aimed at disentangling the relationships

between morphological, functional and ecological diversity

in skin architecture. While several previous studies have

assessed how lizard scale and scale ornamentation relate to

body size (Calsbeek et al. 2006; Oufiero et al. 2011; Wege-

ner et al. 2014; Lourdais et al. 2017; Broeckhoven et al.

2018; Tulli & Cruz, 2018), the (ontogenetic) scaling relation-

ships of their 3D surface structure, particularly measure-

ments of scale height, have remained largely unexplored.

With modern advances in high-resolution imaging tech-

niques (Eggeling, 2018), however, the tools to rapidly col-

lect detailed data on reptilian skin surface structures are

now routinely available.

While imaging and quantifying the complexity of bio-

logical surface structures can be accomplished by various

methods, such as atomic force microscopy (Huber et al.

2005), micro-computed tomography (Broeckhoven et al.

2017) and scanning electron microscopy (Russell & John-

son, 2014; Riedel et al. 2015), these techniques often

require extensive specimen preparation and/or long image

acquisition times, and are thus not well suited for the

high-throughput analysis of large numbers of specimens

in a non-destructive manner. In contrast, gel-based stereo-

profilometry (Johnson & Adelson, 2009; Li & Adelson,

2013) has recently proved to be an exceptionally useful

technique for the rapid 3D structural characterization of

biological surfaces without any specimen preparation, per-

mitting 3D visualization in situ and even in vivo (Lauder

et al. 2016; Wainwright & Lauder, 2016; Wainwright et al.

2017; Ankhelyi et al. 2018; Wainwright & Lauder, 2018).

Inspired by these previous studies, which have primarily

focused on the structural characterization of fish scales,

we here demonstrated that gel-based stereo-profilometry

is also an effective tool for visualizing and quantifying the

scaled surfaces of squamates.

The aim of the present study was twofold: (i) to collect

detailed 3D reconstructions of squamate skin surface

structure; and (ii) to examine how different surface fea-

tures (i.e. surface topography and scale morphology) scale

with body size across different body regions. To assess

scaling patterns, we took a static allometric approach by

studying different individuals of the same species during

various ontogenetic stages (Shingleton, 2010). Studying

ontogenetic scaling patterns may yield valuable broad

insights into trait adaptations, and may aid in identifying

size-related constraints within a species (Schmidt-Nielsen,

1984). Here, we focused on the anole lizard species Anolis

cristatellus, a focal lizard for diverse studies including

thermal biology (Battles & Kolbe, 2018), behavioral ecol-

ogy (Dufour et al. 2018; Gunderson et al. 2018a), invasion

biology (Kolbe et al. 2016; Kahrl & Cox, 2017), functional

morphology (Kolbe, 2015; Winchell et al. 2018) and evo-

lutionary biology (Williams, 1972; Losos, 1990; Gunderson

et al. 2018b).

Materials and methods

Specimens

We examined 25 preserved specimens of A. cristatellus, ranging

from young hatchlings to large-bodied adults [across a snout–vent

length (SVL) range of 16–67 mm]. Specimens were preserved in

70% ethanol and obtained from the herpetological collections of

the Museum of Comparative Zoology at Harvard University (MA,

USA). All individuals originated from the same population (Maya-

guez, Puerto Rico, Greater Antilles), and were collected during the

same field expedition (Table S1). In order to eliminate any potential

effect of intersexual variation in skin surface anatomy and to

increase statistical power, only male lizards were included in this

study. Sex determination for hatchlings, however, was not feasible

as these smaller specimens were morphologically indistinguishable

from one another. Prior to imaging of the lizards’ skin surface, SVL

of each individual was measured using digital calipers (Mitutuyo;

precision = 0.01 mm).

While in this study only museum-preserved specimens were

examined, exploratory follow-up tests demonstrated no significant

effect of preservation on anole surface structure (see Supplemen-

tary materials for details; Table S2).
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Skin surface imaging

Three-dimensional surface reconstructions of (hydrated) squamate

skin were performed using a gel-based stereo-profilometry system

manufactured by GelSightTM (Waltham, MA, USA), as described by

Wainwright et al. (2017). In this approach, a deformable transpar-

ent gel pad (diameter = 43 mm) with one opaque surface was

pressed onto the skin area of interest on the lizard specimen, creat-

ing a surface impression of the lizard’s skin. While the gel pad was

still in contact with the skin, a series of photographs from six differ-

ent illumination angles was acquired, and a topographical 3D map

of the surface was subsequently created by merging the acquired

images using the GelSightTM surface analysis software.

For each lizard specimen, we investigated surface structures at

two body regions: one on the dorsum, posterior to the midpoint

between the pectoral and pelvic girdle; and one on the ventrum,

also posterior to the midpoint between the pectoral and pelvic gir-

dle (Fig. 1a). Skin surfaces were lightly brushed prior to imaging to

remove any surface debris. The resulting reconstructed areas from

each specimen measured 4.46 9 2.98 mm with a pixel density of

5202 9 3465, giving pixel resolution of 0.86 lm in the plane of the

scan. After the 3D reconstructions were performed using the Gel-

SightTM software, MountainsMap (Digital Surf, Besanc�on, France)

was used to quantitatively evaluate the 3D data set.

Quantifying skin surface structure

Using the 3D reconstructions of the skin, the following metrological

variables were extracted to quantify the skin surface topography:

root-mean-square roughness, skew and kurtosis. Roughness (Sq) is

given by the square-root of the sum across the surface of the

squared distance of each point from the mean height. Skew (Ssk)

and kurtosis (Sku) are parameters concerning the shape of the dis-

tribution of heights across a surface. A normal distribution of

heights results in a skew of zero and a kurtosis of three. High

positive skew corresponds to surfaces with many peaks; while low,

negative skew describes surfaces with many valleys. A kurtosis

above three indicates extremely high peaks or valleys, while a kur-

tosis below three indicates relatively gradual (and non-extreme) sur-

face heights. For details on these variables used in surface

metrology, see Whitehouse (1994). All measurements were taken

from 2 9 2 mm cropped regions from the original scans.

Aside from surface topography, we also examined scale morphol-

ogy in order to fully assess overall variation in skin surface structure.

Based on the raw 2D photographs of the skin surface acquired from

the GelSightTM system, we measured several morphological features

of the lizard scales (Fig. 2). First, the area, length and width of 10

dorsal and 10 ventral scales per individual were measured using

ImageJ (Abr�amoff et al. 2004). Because we obtained a repeatability

of over 98% for each of the three variables (Lessells & Boag, 1987),

Fig. 1 Imaging the surface topography of lizard skin. (a) Illustration of the ventrum and dorsum of Anolis cristatellus with the red squares indicat-

ing the anatomical regions of study. (b) Grayscale plan-view images, (c) 3D reconstructions of the surface topography of the lizard skin displayed

as colored elevation maps, and (d) oblique views of the same areas with z-height scale bars.

Fig. 2 Grayscale plan-view image of the dorsal body region of Anolis

cristatellus. Annotations show scale length (L), width (W) and area (A).
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we used (for each variable) the mean of the 10 measurements

obtained for each individual for future statistical analyses. Second,

we counted the number of scales along a 1-mm (anterior to poste-

rior) transect. These scale counts were conducted 10 times on the

ventrum and 10 times on the dorsum, and the average scale num-

ber for the dorsum and ventrum was calculated. Third, to character-

ize scale shape, we used an elliptic Fourier analysis (EFA). This type

of analysis is commonly used to describe the shape of 2D outlines

that do not possess clearly defined homologous landmarks by map-

ping the distance from the geometric center of the outline to each

point on the contour with a polar coordinate function (Smith &

Kriebel, 2017; Potier et al. 2018). This function can then be

described in terms of a Fourier series with a series of harmonics; the

lower harmonics approximate the coarse-scale features of outlines,

whereas the higher harmonics capture more subtle variation. For

more details on EFA, see Shen et al. (2009). From the raw 2D pho-

tographs, we first converted the scales on the images into scale sil-

houettes in Adobe Photoshop (San Jose, CA, USA) and, thereafter,

we transformed the silhouettes into outlines using R package

Momocs (Bonhomme et al. 2014). For the ventral and dorsal scales

separately, we constructed outlines of five scales per individual and

calculated the average scale shape for each individual using the

function ‘mshapes’. Inter-individual variation in average scale shape

was thus quantified using EFA, which decomposed the outlines into

nine harmonics (which gathered 99% of the total harmonic power;

Fig. 3a,b). As there were four coefficients associated with each of

the harmonics, EFA described the shape of each scale with a total

set of 36 coefficients, which we summarized using a principal com-

ponent analysis (PCA). All the analyses were conducted for the ven-

tral and dorsal scales separately.

Data analysis

Prior to analysis, scale morphometrics (area, width and length) and

SVL were log10-transformed, and scale counts were square

root-transformed to meet the assumptions of normality. Traditional

linear regressions were used to assess relationships between body

size and skin topography (roughness, skew and kurtosis), body size

and scale shape (scores of PC1, see above), and between scale size

and scale counts. We used reduced major axis regressions (RMA) to

explore allometric relationships between body size and scale size

(width and length; which are expected to scale isometrically), and

body size and scale area (expected to scale proportional to SVL to

the second power). To test whether relationships differed between

body regions, we included ‘body region’ (ventral and dorsal) as a

factor in the statistical analyses.

Results

From a set of 25 A. cristatellus lizards ranging across a wide

range of body size (SVL; min. = 16.46 mm, max = 67.30

mm), and using gel-based stereo-profilometry, we

obtained data on a variety of skin features to explore onto-

genetic scaling patterns in the skin surface structure of

lizards. In total, we acquired 50 topographic images, with

an average acquisition time (of imaging and digital recon-

struction combined) of approximately 90 s per scan.

Results from these studies demonstrated that the surface

topography of A. cristatellus skin varies considerably

between the dorsal and ventral region of an individual’s

body (Fig. 4), and among individuals of different sizes

(Fig. 5a). Specifically, large individuals have rougher skin

than small individuals (F1,46 = 385.55, P < 0.001), and the

skin on the ventral side of the body is consistently rougher

than on the dorsum (F1,46 = 71.47, P < 0.001; Fig. 5a). The

relationship (slope) between body size and skin roughness

did not differ between body regions (interaction SVL*body
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Fig. 4 Visualization of the variation in skin surface topography between dorsal and ventral body regions in Anolis cristatellus. A 2D colored eleva-

tion map of the (a) original (13.5 mm2) and (b) cropped (1 mm2) skin patch. (c) A profile line graph along the black dotted reference line from (b)

showing surface topography.
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region; F1,46 = 0.30, P = 0.590; Fig. 5a) and, while dorsal sur-

face skew and kurtosis scaled significantly with body size,

ventral surfaces exhibited no such trend (Table 1; Fig. S1).

Detailed morphometric analyses of the dorsal and ventral

skin scales showed that all dimensions for scale size (height,

width and area) were strongly intercorrelated (all P < 0.001;

Fig. S1), and strongly linked with body size (Table 2). Both

dorsal and ventral scale size scaled isometrically with body

size (Table 2), with the ventral scales being larger than the

dorsal scales (F1,46 = 701.50, P < 0.001; Fig. 5b). The

relationship between scale area and body size did not differ

between body regions (interaction SVL*body region;

F1,46 = 0.86, P = 0.359; Fig. 5b). The same was true for the

length and width of the scales (Fig. S1).

Skin surfaces bearing large scales were more rough than

surfaces with small scales (F1,46 = 279.23, P < 0.001, Fig. 5c).

Subsequently, the finding that adult lizards had a rougher

skin on their ventrum than on their dorsum (Fig. 5b) is a

consequence of ventral scales being larger than dorsal

scales: a patch of skin containing dorsal scales of a particular

size is rougher than a patch of skin bearing ventral scales of

the same size (F1,46 = 56.48, P < 0.001; Fig. 5c). The slope

between scale area and skin roughness did not differ signif-

icantly between body regions (interaction scale area*body

region; F1,46 = 2.83, P = 0.100; Fig. 5c). In addition, we

found a strong correlation between scale area and scale

number: individuals with large scales have a lower number

of scales on a 1-mm transect (F1,46 = 762.640, P < 0.001;

Fig. 5d). However, the relationship between scale area and

scale counts differed between body regions (interaction

scale number*body region; F1,46 = 4.85, P = 0.033; Fig. 5d).
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Fig. 5 Scatterplots showing the relationships

between body size and (a) skin roughness

and (b) scale area, and between scale area

and (c) skin roughness and (d) scale number

in Anolis cristatellus.

Table 1 Results of the linear regressions testing for the relationship

between skin surface topography (roughness, skew, kurtosis) and

body size (SVL) for the dorsal and ventral body region in Anolis

cristatellus.

Body region Topographic variable F P R2

Dorsal Roughness 217.3 <0.001 0.90

Skew 11.88 0.002 0.31

Kurtosis 12.46 0.002 0.32

Ventral Roughness 171.4 <0.001 0.88

Skew 2.90 0.102 0.07

Kurtosis 0.33 0.571 0.03
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Scale number explained 82.0% (dorsal) and 82.3% (ventral)

of the intraspecific variation in scale area.

The PC analysis of harmonic coefficients from the EFAs

captured 72.2% of the variation in dorsal scale shape in the

first component (PC1; Fig. 3c). A second PC analysis on the

ventral scale shapes explained 59% of the variation in PC1.

Subsequently, we used the respective scores of PC1 as an

index for scale shape. A linear regression was unable to find

a significant relationship between body size and dorsal

scale shape (F1,23 = 0.164, P = 0.689; Fig. 3d), and ventral

scale shape (F1,23 = 0.668, P = 0.422).

Discussion

Understanding the 3D microstructural surface details of bio-

logical systems can provide critical insight into how species

interact with their environments. In the example provided

here, we describe a new tool, gel-based stereo-profilome-

try, for investigating squamate skin structure to help

address these needs. Using this approach, we were able to

successfully assess ontogenetic scaling patterns of the 3D

skin surface structure of A. cristatellus lizards. The findings

of this study clearly demonstrate the utility of gel-based

stereo-profilometry for the detailed and rapid micro-scale

visualization and quantification of the 3D surface structure

of lizard skin.

Body size and skin topography

A number of recent studies have documented substantial

variation in a range of morphological characteristics of

the skin surface structures of squamate reptiles (Arnold,

2002; Gower, 2003; Schmidt & Gorb, 2012; Spinner et al.

2013a,b; Allam et al. 2019). Remarkably, however, only a

few studies have quantified the 3D structure of squamate

skin surfaces, with data limited to microstructures on the

ventral scales of snakes (Baum et al. 2014a,b), and no

study to date has evaluated the relationship between 3D

scale structure and body size variation. In our present

study, we found that the skin surface topography of

A. cristatellus lizards is tightly linked with body size. For

example, body size explained as much as 88% (ventrum)

and 90% (dorsum) of the observed intraspecific variation

in skin roughness. This result likely has strong functional

implications, as roughness is known to affect the optical

and mechanical properties of biological surfaces (Gorb,

2009). Compared with smooth surfaces, for example,

rough surfaces typically reflect light more diffusely (e.g.

facilitating camouflage in vipers; Spinner et al. 2013a), are

more hydrophobic (e.g. enabling self-cleaning in geckos;

Watson et al. 2015) and create more friction (e.g. allowing

undulating locomotion in snakes; Hazel et al. 1999). For

example, many snakes and legless lizards locomote via an

undulatory behavior (Jayne, 1986; Gasc & Gans, 1990),

which requires ventral skin to provide high, directional

friction in order to support forward motion, and slide

along the substrate (Hu et al. 2009). In these species, size-

related variation in skin roughness might influence loco-

motory abilities, and future experimental work using the

techniques described here could be used to assess whether

size-related variation in skin surface topography also

reflects size-related variation in functionality or perfor-

mance.

Gel-based stereo-profilometry is unique in that it allows

rapid 3D microstructural characterization of biological sur-

faces in situ and in vivo (Wainwright et al. 2017) at sizes

between tens of millimeters to a few hundred microns. As

such, this method is well suited for high-throughput analy-

sis of large numbers of specimens in a non-destructive man-

ner. However, nanoscale structural analyses still require

labor-intensive and destructive techniques, such as scanning

electron microscopy (Russell & Johnson, 2014) or atomic

force microscopy (Huber et al. 2005). Different research

questions thus demand different technical approaches, and

ultimately it is the combination of compatible techniques

that will offer the most complete assessment of an animal’s

skin surface structure.

Body size and scale morphology

Aside from skin surface topography, our findings also show

considerable intraspecific variation in scale size among

lizards at different ontogenetic stages. Information on scale

size and its body size-dependent variation is functionally

relevant because keratinized scales have been proposed to

help reduce evaporative water loss (Bentley & Schmidt-

Table 2 Allometries of scale morphometrics versus SVL in Anolis cristatellus, obtained through RMA, with SVL as independent variable.

Body region Scale variables Intercept 2.5% CI 97.5% CI Slope 2.5% CI 97.5 CI R2

Dorsal Area (mm2) 0.61 0.17 1.00 2.07 1.83 2.34 0.92

Length (mm) 0.25 �0.07 0.52 1.10 0.93 1.29 0.86

Width (mm) 0.27 0.01 0.49 1.08 0.94 1.23 0.90

Ventral Area (mm2) 1.12 0.63 1.55 2.25 1.98 2.55 0.92

Length (mm) 0.50 0.18 0.77 1.17 0.99 1.36 0.88

Width (mm) 0.68 0.43 0.91 1.10 0.97 1.25 0.91
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Nielsen, 1966; MacLean, 1985; Eynan & Dmi’el, 1993; Dmi’el

et al. 1997). Surprisingly, almost no physiological research

has been conducted that experimentally tests the direct

effect of scale size on water loss and, as such, future work

to explore these potential correlations is warranted.

In our study, we found a strong positive relationship

between scale size and body size in A. cristatellus (scale size

scales isometrically with body size). This result is not unex-

pected, as the scale-size to body-size link has been docu-

mented (predominantly on the interspecific scale) in many

lizards groups, such as Liolaemus (Tulli & Cruz, 2018), Scelo-

porus (Oufiero et al. 2011) and Anolis (Wegener et al.

2014). Interestingly, most studies do not measure the actual

size of the scale, but instead count the number of scales

along a defined transect on the skin and use the inverse of

these scale counts as a proxy of scale size (Kerfoot, 1970;

Thorpe & Baez, 1987; Malhotra & Thorpe, 1997; Oufiero

et al. 2011; Wegener et al. 2014). Indeed, scale number per

unit length is often a strong predictor of scale size, as it

explains approximately 95% of the interspecific variation in

scale size among Liolaemus species, for instance (Tulli &

Cruz, 2018). Based on microscopically detailed images, how-

ever, our study shows that scale number could only explain

approximately 82% of the intraspecific variation in

A. cristatellus, leaving 18% still unaccounted for. In addi-

tion, we found that the relationship between scale size and

scale number differed between the body regions. Together,

these findings underline that researchers should keep think-

ing critically when using scale number as the inverse mea-

sure of scale size, especially in correlative tests aiming to

disentangle the environmental drivers and constraints of

scale size divergence.

Using modern geometric morphometric techniques (EFA;

Bonhomme et al. 2014), we also successfully quantified

scale shape in A. cristatellus and found no indication of

shape changes during ontogeny. Although the shape of

scales can vary considerably among squamate species, scale

shape is known to be particularly species-specific and fixed

at birth (Harvey & Gutberlet, 1995). The conservative charac-

ter of scale shape has not gone unnoticed by naturalists for

whom it serves an important trait for both early and mod-

ern taxonomic and systematic investigations (Leydig, 1873;

Fitzsimons, 1901; Boulenger, 1921; Bucklitsch et al. 2016).

While earlier work has typically scored scale shape qualita-

tively (e.g. circular, oval, elongated, guttiform), it would be

opportune for future comparative studies to make use of

modern methods to quantify shape, such as the EFA

described in the present study to precisely quantify inter-

specific shape variation and increase statistical power.

Intra-individual variation in skin surface structure

Our examination of A. cristatellus skin not only showed

that various features of the skin surface structure of lizards

are size-dependent, but also that they can vary substantially

among body regions within the same individual.

Importantly, the relationship between body size and all

measured skin surface variables did not differ substantially

between the ventral and dorsal body region in our study.

Whereas qualitative intra-individual diversity in scale size

and shape has been documented for most squamate species

(Fitzsimons, 1901; Boulenger, 1921; Peterson & Williams,

1981; Peterson, 1983; Arnold & Ovenden, 2004), the use of

gel-based stereo-profilometry permits the ability to rapidly

and quantitatively compare skin 3D topography between

body regions. We demonstrate that the roughness of a 1-

mm2 skin patch is higher on the ventral body region of an

individual lizard than on its dorsum. This finding appears to

be a consequence of ventral scales being larger than dorsal

scales (Fig. 5a–c) because skin patches carrying similar-sized

dorsal and ventral scales (e.g. a hypothetical ventral skin

patch of a small lizard and dorsal patch of a large lizard, so

that in these two examples the scales are size-matched) are

rougher on the dorsum than on the ventrum. The observed

intra-individual variation in skin topography (which is inter-

related with scale size and shape) might thus mirror the

diversity of tasks the specific parts of the skin must perform,

and may provide critical insights into the functional signifi-

cance of these differences.

Novel imaging techniques open new avenues of

investigation

In addition to the ability to quantify the micro- and

macro-structural details of squamate skin, the 3D data

sets acquired using gel-based stereo-profilometry can be

directly converted into surface meshes, which can in turn

be 3D printed. These tangible models can then be

directly employed for studies to investigate the role of

scale geometry on animal–substrate interactions, or

enlarged for educational purposes to illustrate key differ-

ences between different squamate taxa. The techniques

described here thus open exciting new avenues for inves-

tigating structure–function relationships in squamate skin

and, as such, we encourage future squamate researchers

to examine intra-individual variation in surface topogra-

phy in an attempt to help link structural with functional

variation in these ecologically and morphologically diverse

reptiles.
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