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A phylogenetically diverse minority of snake and lizard species exhibit rostral
and ocular appendages that substantially modify the shape of their heads.
These cephalic horns have evolved multiple times in diverse squamate
lineages, enabling comparative tests of hypotheses on the benefits and costs
of these distinctive traits. Here, we demonstrate correlated evolution between
the occurrence of horns and foraging mode. We argue that although horns
may be beneficial for various functions (e.g. camouflage, defence) in animals
that move infrequently, they make active foragers more conspicuous to prey
and predators, and hence are maladaptive. We therefore expected horns to
be more common in species that ambush prey (entailing low movement
rates) rather than in actively searching (frequently moving) species. Consistent
with that hypothesis, our phylogenetic comparative analysis of published data
on 1939 species reveals that cephalic horns occur almost exclusively in sit-and-
wait predators. This finding underlines how foraging mode constrains the
morphology of squamates and provides a compelling starting point for similar
studies in other animal groups.
1. Background
The heads ofmany animals support eye-catching appendages. Such species range
from hose-nosed weevils to rhinoceroses, and from angler fish to narwhals. The
functions of these protruding cephalic structures are well understood in some
groups (e.g. dung beetles and ungulates [1]), but less so in others, including squa-
mate reptiles. The heads of numerous species of lizards and snakes are adorned
with crests, spines, spikes or other projections (which we refer to as ‘horns’;
figure 1). These spectacular appendages may play a role in aspects such as
foraging [2,3], enhancement of camouflage (by disrupting the outline of the
head) [4–6], protection [7–11], and intraspecific interactions including combat
and courtship [12–15]. Phylogenetic associations between horns and species’mor-
phology, ecology, and habitat have been used to infer fitness advantages of horns
(e.g. [10,16–19]). By contrast, the potential costs of possessing such structures have
rarely been mentioned.

Morphological traits entail both benefits and costs, and the evolution of any
trait is driven by the balance between those two sides of the equation. For example,
body armour in cordylid lizards provides protection (e.g. inOuroborus cataphractus
[20]) but restricts locomotion and flexibility, and thus is most evident in sedentary
heavy-bodied species [21]. Costs for cephalic horns might include hindering loco-
motion and rendering an individual more visible when it moves. In general,
camouflageworks best when an animal is immobile [22,23]. We posit that protrud-
ing structures on theheadmay render amoving reptilemore easily discernible from
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Figure 1. Examples of the diversity of cephalic horns in squamates. Rostral appendages in Anolis proboscis (a) and Langaha madagascariensis (b); squamosal–
parietal and supra-ocular horns in Moloch horridus (c) and supra-ocular horns in Cerastes cerastes (d ). Photo credits: Javier Ábalos Álvarez (a); Frank Deschandol (b);
Stephen Zozaya (c); Laura Ruysseveldt (d ).
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the background, hencemore obvious to both predators andprey,
orevenhindermovements [24]. This hypothesis predicts that the
benefit-to-cost ratio for cephalic horns is higher in sedentary
individuals than in more active ones.

Many squamate species can be classified as either sit-and-
wait foragers or actively foraging species [25,26]. Foraging
style in squamates is associated with a suite of behavioural,
physiological, morphological and life-history characteristics,
supporting the existence of a ‘foraging syndrome’ [27,28].
If horns are more conspicuous when animals are moving,
we expect that these structures should occur more often in
sit-and-wait predators than in widely foraging species. Here
we test this hypothesis through phylogenetically informed
comparative analyses.
2. Material and methods
(a) Data collection
We retrieved data on foraging mode from an updated version
of the dataset of Meiri [29] and other published studies (see elec-
tronic supplementary material, table S1 for full list of references),
for a total of 1939 squamate species classified either as active or
sit-and-wait foragers. Species with mixed foraging modes, and
those lacking data on foraging mode, were excluded. For each
of these 1939 species, we then collected data on the presence
and absence of horns, visually assessed from images on Reptile-
Database [30] and ‘research grade’ observations from iNaturalist
[31]. When images of a species were not available from those
sources, we consulted recent publications on the taxon or original
descriptions (see electronic supplementary material, table S1 for
full list of references).
We defined as ‘horns’ any protruding structure present in the
rostral, ocular or occipital area of the head (figure 1). Some of these
structures fall into the category of ‘true horns’, being bony protru-
sions covered by a keratin sheath (e.g. in some chameleons [32]),
whereas others are protuberant bony cranial processes and/or
soft projections composed of connective tissue covered by one
or multiple keratinous scales. Rostral horns were usually com-
posed of either enlarged nasal (sub-, post-, supra-, inter-), rostral
and/or fronto-nasal scales (e.g. in Anolis proboscis, Langaha
madagascariensis, Cyclura cornuta). Ocular horns were either
protruding ocular (supra-, post-) or supraciliary scales (e.g. in
Moloch horridus, Cerastes cerastes, Correlophus ciliatus), whereas
occipital horns included all overgrowths of parietal (e.g. crests,
processes) and squamosal (e.g. tufts, spines, horns, casques)
scales (e.g. in Basiliscus basiliscus, Phrynosoma cornutum, Anolis
chamaeleonides). Species with any of those structures were con-
sidered horned. Species exhibiting appendages only in the adult
stage (e.g. Ceratophora stoddartii), or in only one sex (e.g. Anolis
proboscis), or species showing horn polymorphism (e.g. Cerastes
cerastes), were also classified as horned. If horns were not evident
from either images or descriptions, the species was classified as
hornless. Species with elongated snouts (e.g. Oxybelis fulgidus)
and/or specialized rostral scales (e.g. ‘hog-nose’, ‘shovel-nose’,
‘leaf-nosed’, and ‘quill-snouted’ snakes) were also classified as
hornless because they lack protruding structures. We mapped
our data on a time-calibrated phylogeny for squamates [33] for
phylogenetic analyses.

(b) Analyses
Prior to phylogenetically informed data analysis, we explored
associations between cephalic horns and foraging mode using
chi-square (χ2) statistics. After pruning the phylogenetic tree to
include only the 1939 species covered in this study, we tested
for phylogenetic signal in both variables by calculating Fritz &
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Figure 2. Horn expression across the adopted squamate phylogeny (a), with proportion of foraging mode (b) and frequency of trait gains and losses (c). Squamate
phylogeny (1939 species) indicating the posterior probability of cephalic horns, obtained via stochasticity mapping along branches (ER model; 1000 replicates), with
sit-and-wait foragers indicated at the branch tips of the tree (a). Frequencies of horn losses (from horned to hornless state) and gains (from hornless to horned
state) across the 1000 replicates are also shown (c), together with the proportion of active and sit-and-wait foragers among hornless and horned squamates con-
sidered in this study (b). Silhouettes images from PhyloPic (https://www.phylopic.org/).
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Purvis’ D [34] (10 000 permutations; ‘phylo.d’ function; ‘caper’
package [35]). We then ran phylogenetic generalized linear
models (PGLM logistic regression; ‘phyloglm’ function; 2000
bootstraps; ‘phylolm’ package [36]) to quantify the predictive
power of foraging mode on the presence of cephalic horns (bino-
mial variable: horned = 1; hornless = 0). We used Pagel’s [37]
PGLS method (‘fitPagel’ function; ‘phytools’ package [38]) to
test for a phylogenetic correlation between horns and foraging
mode. We conducted such tests under both ‘equal rates’ (ER)
and ‘all rates different’ (ARD) evolutionary models, exploring
different dependency relationships between the two variables.
Next, we performed ancestral state reconstructions via stochastic
character mapping (1000 simulations; ‘make.simmap’ function
[38]) to estimate the number of transitions from hornless to
horned in squamate evolutionary history. We ran reconstructions
under both ER and ARD scenarios and retained the most
parsimonious model (i.e. lowest number of transitions).

To test the robustness of our results with respect to phylo-
genetic uncertainty, we repeated the PGLM test on a set of
1000 trees, randomly sampled from the 10 000 trees used to gen-
erate our adopted phylogeny [39] via the ‘tree_phyglm’ function
of the ‘sensiPhy’ package [40].
3. Results
Of the 1939 squamate species in this study, 53% were
reported to be active foragers (n = 1031) and 47% to be sit-
and-wait foragers (n = 908). Nine per cent (n = 175) of all
species were horned and 91% were hornless (n = 1764) (elec-
tronic supplementary material, table S2a). The vast majority
of horned squamates were sit-and-wait foragers (94%; n =
164; versus active foragers 6%, n = 11; χ2 = 167.77, d.f. = 1,
p < 0.001) (figure 2b; electronic supplementary material,
table S2b). Phylogenetically informed analyses corroborated
the relationship between foraging mode and cephalic horns
(β ± SE: 0.810 ± 0.3, pseudo-R2 = 0.5, z = 2.7, p < 0.01) (elec-
tronic supplementary material, table S3a). Also, all Pagel’s
tests supported correlated evolution between horns and
sit-and-wait foraging ( p < 0.001) (electronic supplementary
material, table S4a).

Fritz & Purvis’ phylogenetic signal test revealed that horn
presence exhibited moderately strong phylogenetic clumping
(D < 0, p0 = 0.65, p1 = 0), as expected under a Brownian
motion model of trait evolution (D = 0) (electronic supplemen-
tarymaterial, table S5). Stochastic character mapping over 1000
reconstructions (model = ER) revealed an average of 92 tran-
sitions (figure 2a), of which 69 were independent gains
(range = 63–74) and 23 were losses (range = 17–29) of horns
across squamate phylogeny (figure 2c; electronic supplementary
material, table S6a).

Furthermore, the evolutionary models considering inter-
dependent evolution between the two variables scored best
(lower AIC), suggesting that foraging mode had a role in
horn evolution, but also that cephalic appendages (when pre-
sent) influenced the species’ foraging habits (electronic
supplementary material, table S4b). Results from the sensi-
tivity analysis (β ± SE: 0.855 ± 0.3, z = 2.9, p < 0.01; electronic
supplementary material, table S3b) further supported our
initial PGLM results (electronic supplementary material,
table S3a), suggesting that they are not influenced by
phylogenetic uncertainty.
4. Discussion
Consistent with our predictions, cephalic horns occur mostly
in sit-and-wait predators. This result is unlikely to be due to
chance, as correlated evolutionary changes between horns and
sit-and-wait foraging have occurred several times in squamate

https://www.phylopic.org/
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phylogeny (figure 2). Furthermore, our analyses show not only
that shifts between states in both horns and foraging mode are
common in squamates (electronic supplementary material,
table S6–S7), but also that these shifts have happened together,
or in tandem, in many cases (electronic supplementary
material, figure S1). This pattern suggests that our significant
results are not driven by phylogenetic inertia, where a few
clades happen to retain both traits [41].

Previous research has identified multiple plausible func-
tions (benefits) of horns. For example, cephalic ornaments
in many lizards are more developed in adult males than in
females, and are used in territorial displays, courtship and/
or male–male combat bouts (e.g. [8,14]). Where present in
both sexes, horns may also serve in species recognition (e.g.
in chameleons [12]). Other plausible functions of cephalic
horns include foraging: for example, rostral projections of
the tentacled snake (Erpeton tentaculatum) are mechanosen-
sory structures that aid this sit-and-wait predator to capture
fish [3]. Plausibly, sharp rigid spines on the head also may
discourage a predator from seizing the animal (e.g. in Phryno-
soma spp. [10] andMoloch horridus [11]). Lastly, cephalic horns
may enhance the effectiveness of camouflage for a more
sedentary reptile by disrupting the outline of the head [6].
Except for the latter hypothesis, all these functions should
apply equally to active foragers as to sit-and-wait predators,
and thus cannot explain the strong association between
cephalic horns and foraging mode revealed by our analyses.

Turning to the costs of cephalic horns, we suggest that
complex protruding structures on an animal’s head render
it more detectable against the background while moving.
Thus, a trait that enhances camouflage when the animal is
immobile may have the reverse effect when the animal
moves rapidly [22,42]. Theoretical and empirical studies on
camouflage consistently demonstrate that detection of a com-
plex outline is dependent on movement [43,44], but more
direct experimental tests would be valuable. Ideally, such
studies would incorporate rates of movement. Some chame-
leons, for example, move slowly but consistently through
the habitat despite their overall reliance on sit-and-wait fora-
ging [45]. At such slow rates of movement, cephalic horns
may still help in camouflage.

Some of themost interesting cases of cephalic horns involve
horned species that are active foragers rather than sit-and-wait
predators: that is, exceptions to the general rule. If cephalic
horns are a disadvantage to a fast-moving animal (by render-
ing it more conspicuous), why do some active foragers have
cephalic horns? The answer may lie in features either of the
horns, or of the movement patterns of the species involved.
For example, males of the sea snake Emydocephalus annulatus
develop pronounced rostral spines only during the mating
season and use them to prod females during courtship
[13,46]. In that case, the small (and temporary) forward-project-
ing spine would have little impact on the snake’s visibility to
predators, especially given the low movement rates of this
species and the scarcity of predators in shallow-water habitats
[47]. Small forward-projecting rostral spines are also seen in
some of the other ‘exceptions to the rule’, such as the arboreal
snakes Ahaetulla nasuta and Philodryas baroni. For these active
foragers, however, horns may be more beneficial (e.g. for
camouflage) than detrimental.

The functional relationships between cephalic ornamenta-
tion and foraging mode seen in our broadscale comparisons
could be explored in more detail within clades that exhibit
variation in these traits. An interspecific link between body
shape (often associated with foraging mode) and investment
into defensive and offensive structures (e.g. spines and horns)
has been documented in several lizard lineages, whereby
stockily built species have larger structures [21,48]. In phry-
nosomatid lizards, horn size appears to depend on
predation pressure [10], and species with larger cephalic
horns are slower and more specialized sit-and-wait foragers
than are congeners with smaller horns [48]. Correlations
between habitat type and horn morphology in vipers [17],
and ornamentation conspicuousness (including horns) in
agamid lizards [6], further support the idea that variation
in habitat and, consequently in exposure to predators, may
affect a species’ investment into cephalic horns.

Intraspecific variation in horn elaboration also provides
exciting research opportunities. For example, a single popu-
lation of vipers can contain individuals with horns and
others without, sometimes in the same litter (e.g. Cerastes
cerastes [49]). It would be fascinating to see if the correlation
between foraging mode and cephalic horns occurs within,
as well as among, populations. Studying finer-scale variation
in foraging behaviour (e.g. movement rates [26,50]) and
degrees of horn development, rather than treating both as
binary variables, may also prove insightful.

Cephalic structures often differ between the sexes (e.g. in
Langaha spp. [51] and Ceratophora spp. [16]) and/or are devel-
oped in one sex only (e.g. Anolis proboscis [15,52]). In agamid
lizards, the evolution of sexually dimorphic cephalic and
body ornamentations occurred either in one sex indepen-
dently or in both sexes contemporarily, with subsequent
transition to male-biased dimorphism [53]. We hypothesize
that in such cases, sex differences in horn size may be associ-
ated with sex differences in movement patterns (and perhaps
in foraging mode), as commonly occur in squamates (e.g.
Acrochordus arafurae [54,55]).

Our results reinforce suggestions that cephalic horns in
lizards and snakes have evolved for a range of functions,
and have arisen independently multiple times. This leaves
many possibilities open for future studies on the significance
and function of such enigmatic structures. Importantly, our
analyses suggest that the evolution of horns in squamate rep-
tiles may have been influenced more heavily by constraints
(i.e. failure of camouflage when the animal moves frequently)
than by advantages.

While we tested only squamates, our hypothesis may apply
to additional taxa. Cephalic appendages are found in many
other species, from arthropods to vertebrates including fish,
amphibians, and mammals [1]. In all those groups, there are
examples of foraging modes that range from ambush to active
searching [56–60]. We predict that the association between fora-
ging mode and cephalic horns will apply to such groups as it
does to lizards and snakes. Analyses of selective forces for
trait elaboration must consider costs as well as benefits when
interpreting diversity in organismal morphology.
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