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1  | INTRODUC TION

There is notable variation in body shape and form among differ-
ent living organisms, and morphologists have been instrumental in 
using a wide variety of visualization techniques to better understand 

the nature of variation among species (Irschick & Higham,  2016). 
Reconstructing and analysing the shapes of biological structures 
across different length scales and surface structures is important 
for many reasons, including detailed description of morphology 
for studies of macro-evolution, accurate reference for bioinspired 

 

Received: 30 October 2020  |  Accepted: 14 March 2021

DOI: 10.1111/2041-210X.13603  

R E S E A R C H  A R T I C L E

Quantifying surface topography of biological systems from 3D 
scans

Alejandro Martinez1  |   Damon Nguyen1 |   Mandeep S. Basson1  |   Josh Medina2 |   
Duncan J. Irschick2 |   Simon Baeckens3

1Department of Civil and Environmental 
Engineering, University of California Davis, 
Davis, CA, USA
2Department of Biology, University of 
Massachusetts, Amherst, MA, USA
3Functional Morphology Lab, Department 
of Biology, University of Antwerp, Wilrijk, 
Belgium

Correspondence
Alejandro Martinez
Email: amart@ucdavis.edu

Simon Baeckens
Email: simon.baeckens@uantwerp.be

Funding information
This material is based upon work supported 
in part by the Engineering Research Center 
Program of the National Science Foundation 
under NSF Cooperative Agreement No. 
EEC-1449501. Any opinions, findings 
and conclusions or recommendations 
expressed in this material are those of the 
author (s) and do not necessarily reflect 
those of the National Science Foundation. 
S.B. was supported by an FWO-Flanders 
Postdoctoral Fellowship (12I8819N).

Handling Editor: Arthur Porto

Abstract
1.	 Understanding the three-dimensional (3D) surface complexity of biological sys-

tems can yield fundamental insights into how organisms interact with their en-
vironments. The wealth of current imaging technologies permits detailed 3D 
visualization of biological surfaces on the macro-, micro- and nanoscale. Analysis 
of the reconstructed 3D images, however, remains a challenging proposition.

2.	 Here, we present QuSTo, a versatile, open-source program developed in Python 
to quantify surface topography from profiles obtained from 3D scans. The pro-
gram calculates metrics that quantify surface roughness and the size (i.e. height 
and length) and shape (i.e. convexity constant (CC), skewness (Sk) and kurtosis (Ku)) 
of surface structures.

3.	 We demonstrate the applicability of our program by quantifying the surface to-
pography of snake skin based on newly collected data from white light 3D scans 
of the ventrum and dorsum of 32 species. To illustrate the utility of QuSTo for 
evolutionary and ecological research, we test whether snake species that occur in 
different habitats differ in skin surface structure using phylogenetic comparative 
analyses.

4.	 The QuSTo application is free, open-source, user-friendly and easily adapted for 
specific analysis requirements (available in GitHub, github.com/GMLatUCDavis/
QuSTo) and is compatible with 3D data obtained with different scanning tech-
niques, for example, white light and laser scanning, photogrammetry, gel-based 
stereo-profilometry. Scientists from various disciplines can use QuSTo to examine 
the surface properties of an array of animal and plant species for both fundamen-
tal and applied biological and bioinspired research.
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research and for testing basic form-function relationships. As noted 
by Forbes (2006), biological structures offer a ‘hidden world’ which, 
once revealed, can shed light on function. In particular, knowledge 
of the three-dimensional (3D) structural surface details of biolog-
ical systems is crucial as, amongst other uses, it provides insight 
into how species interact with their environments. For example, 
scanning electron microscopy (SEM) studies revealed the intricate 
surface structure of lotus leaves (Nelumbo), thereby explaining the 
‘Lotus-leaf effect’ in which water droplets are repelled off the ul-
trahydrophobic leaf surface enabling self-cleaning (Neinhuis & 
Barthlott, 1997). Other examples in which scientists used studies of 
anatomy and structure to develop understanding of form-function 
relationships include toepads in geckos (Autumn et al., 2000, 2002) 
and shark skin (Ankhelyi et al., 2018; Oeffner & Lauder, 2012). Such 
investigations thus provide a valuable resource for bioinspired stud-
ies (Domel et al., 2018; Wen et al., 2014, 2015).

In recent years, advances in imaging techniques have enabled 
scientists to image and analyse the 3D shape of organic surface 
structures at varying length scales by means of X-ray computed 
tomography (X-ray CT), photogrammetry, laser scanning, gel-based 
stereo-profilometry (GSP) and atomic force microscopy (AFM), to 
name a few. Although these techniques have proven valuable for 
the visualization and analysis of complex forms and shapes, there 
remains a need for more flexible, open-access software solutions 
that can analyse 3D surface data from a range of scans, and across a 
range of computing platforms.

Here, we describe a new analysis application—QuSTo (Quantification  
of Surface Topography)—which addresses the aforementioned 
needs. The QuSTo code is freely available in GitHub (github.com/
GMLatUCDavis/QuSTo) and supplemented with a written tutorial 
(ReadMe.txt). In this paper, we describe this program, and as a proof 
of concept, use it to analyse the surface topography of the dorsal 
and ventral skin of 32 snake species from white light 3D scans. To 
further illustrate the broad applicability of our method for the fields 
of evolution and ecology, we also examined how variation in the skin 
surface topology of snake species varies in relation to their habitat 
use.

As the skin of snakes is among the most diverse of all terres-
trial vertebrates (Bereiter-Hahn, 1986; Schmidt & Gorb, 2012), and 
snakes exhibit notable variation in habitat use (Hsiang et al., 2015), 
investigating the possible linkage between the skin surface structure 
and habitat use of snakes is of general interest to a wide range of 
biologists and engineers. In addition to understanding the ecomor-
phological significance of the fine surface structures of snake skin, 
there is also value in studying the evolution of snake skin to uncover 
potential bio-inspired engineering applications and technology de-
velopment. As there is a need for novel materials and structures that 
can for instance effectively burrow into soil (e.g. Chen2021; Huang 
et al., 2020; Naclerio et al., 2018; Ortiz et al., 2019) or generate fric-
tional anisotropy (e.g. Martinez et al., 2019; Tramsen et al., 2018), 
studying how the 3D surface structures of snakes relates to habitat 
use might provide important insight. Further, as the study of robotics 
continues to mature, there are potential benefits from integrating 

bioinspired features into these designs, see for example, snake-
inspired robots capable of locomoting on complex and rugged ter-
rain (e.g. Marvi et al., 2014).

2  | QUSTO PROGR AM AND WORKING 
E X AMPLE

QuSTo is an open-source application developed in the program-
ming language Python (version 3.7) to quantify the topography of 
biological surfaces from any profile taken from 2D or 3D images. 
Packaged with QuSTo is a supplementary module, called QuSlicer, 
that allows users to obtain 2D elevation profiles from 3D mesh files 
(in .obj, .ply or .stl format) which can be used to provide the input 
data for QuSTo. The QuSTo application has a graphical user inter-
face (GUI) that enables users to quantify the surface roughness, 
as well as the size (e.g. length and height) and shape (convexity, 
kurtosis, skewness) of specific surface structures. In this section, 
we elaborate on the methods and mathematical formulations that 
the QuSTo code uses to quantify overall surface topography. We 
do so based on a newly collected dataset of white light 3D scans of 
the ventral and dorsal skin surface of 32 snake species. To illustrate 
the use of QuSTo for evolutionary ecological research, we examine 
evolutionary divergence in skin surface structures among snake 
species inhabiting different habitats using phylogenetic compara-
tive statistics.

2.1 | Snake specimens and data collection

Fifty-five liquid-preserved specimens belonging to 32 differ-
ent snake species were obtained from the Museum of Vertebrate 
Zoology (MVZ) at the University of California Berkeley (CA, USA). 
Species were chosen to represent a reasonable sample of the mor-
phological, ecological and taxonomic diversity of snakes (Table S1). 
While not comprehensive, this sample includes 27 genera, including 
from some of the major groups of snakes, such as Acrochordidae, 
Boidae, Colubridae, Viperidae, Pythonidae, Leptotyphlopidae and 
Elapidae. After measuring body length (from snout to tip of the tail) 
with a measuring tape (precision = 0.1 mm) and diameter with cal-
lipers (precision = 0.05 mm) at the centre along the snake's length, 
we scanned sections on the dorsal and ventral skin of each specimen 
with a structured white light scanner (VR-3100, Keyence). The scan-
ner obtains 3D images of an object by projecting patterns of white 
light on the scanned surface while a camera and light-sensing system 
record the distortion of the light pattern on the object (see e.g. Niven 
et  al.,  2009; Rocchini et  al.,  2001). The VR-3000 Series software 
then reconstructs the 3D geometry of the object being scanned. The 
scans have an area that is 24 mm in length and 18 mm in width, with 
a reported height resolution of 0.1 µm. Prior to scanning, the skin 
surface of each specimen was gently patted dry to remove residual 
liquid and avoid light reflections that may distort 3D imaging. Four 
scans were taken on the central one-third section along the snake's 
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length, two scans on the dorsum and two on the ventrum. To remove 
the overall curvature resulting from the snake's diameter and length, 
a 3D polynomial function of 5th order or smaller was fitted to the 
images. Then, the fitted function was subtracted from the original 
scan, resulting in a computationally flattened image. Afterwards, the 
3D images were cropped to an area that captured three to 15 scales 
along its length. Two elevation profiles were acquired per scan along 
the longitudinal axis (from head to tail), yielding eight profiles per 
specimen (four along the dorsal scales and four along the ventral 
scales). The profiles were obtained using the VR-3000 Series soft-
ware (Figure 1a,b). As an example, the 3D scans and elevation pro-
files of four ecologically and morphologically diverse snake species 
(Acrochordus granulatus, Charina bottae, Hydrophis cyanocinctus and 
Lampropeltis getula) are shown in Figure 2. The specific locations of 
the 2D profiles were chosen as those with the least wear determined 
based on systematic visual inspection of the preserved specimens. 
Regardless, repeatability tests showed that the profile location has 
no significant influence on surface topography quantification (see 
below; Table S2). While the 2D profiles analysed as part of this work 
were obtained from the Keyence VR-3000 Series software, the sup-
plementary QuSlicer module can be used to generate and flatten 
profiles for use in QuSTo (as in Figure 6). More information on the 
QuSlicer can be found in the GitHub site (https://github.com/GMLat​
UCDav​is/QuSTo) and accompanying ReadMe file.

2.2 | Data format of the input file

The QuSTo code requires input data in the form of two text strings 
containing the x and z coordinates (parallel and perpendicular to the 
skin surface respectively) of a surface elevation profile (Figure 1b). 
These profiles can be obtained using the QuSlicer module or using 
any software capable of generating elevation profiles from a 3D 
image. Since the z coordinates need to be rounded to the nearest 
integer to reliably calculate the surface shape parameters in QuSTo, 
the calculation accuracy improves as the z coordinate values in-
crease—a process that can be controlled by choosing the adequate 
input data units. For this particular study, the input files obtained 
from our white light scans were.csv files containing two data col-
umns, the first column containing the x coordinate data and the 
second column containing the z coordinate data. The profiles were 
analysed in units of micrometres, which resulted in z coordinates be-
tween 23 and 1,150.

2.3 | Surface feature quantification with QuSTo

The QuSTo code computes a range of topographical parameters 
from 2D elevation profiles, including the profile arithmetic mean 
roughness or average surface roughness (Ra) and five individual 

F I G U R E  1   Quantifying surface topography from 3D scans using the newly developed QuSTo application. (a) The ventral skin surface of a 
gopher snake (Pituophis catenifer) is imaged using a 3D imaging technique (here: white light scanning). (b) A 2D profile of the ventrum is taken 
along the snake's longitudinal axis and the program quantifies the surface roughness (Ra). (c) QuSTo segments and repositions the individual 
scales and computes the scale height (H) and length (L). (d) The program quantifies the scale shape by fitting a quadratic equation to each 
individual scale profile to determine the convexity constant (CC). QuSTo creates a distribution of x coordinate values repeated z times and 
computes the skewness (Sk) and kurtosis (Ku)
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structure parameters: height (H), length (L), convexity constant (CC), 
skewness (Sk) and kurtosis (Ku). QuSTo was developed to analyse 
profiles oriented such that going from left to right corresponds to 
the head-to-tail direction (Figure 1a,b). Surface topography can be 
quantified by means of the surface roughness of a 2D profile taken 
along a cross-section (e.g. Baeckens et al., 2019; Lauder et al., 2016; 
Wainwright et al., 2017, 2019). Among the different surface rough-
ness parameters used in science and engineering, the arithme-
tic mean roughness or average roughness and root mean square 

roughness (Rq) are commonly used to describe the degree of vertical 
relief in a 2D profile; in general, a greater surface roughness value in-
dicates more prominent structures (Figure 3a). The average surface 
roughness is used in QuSTo and is defined analytically as (ISO-4287, 
1997; Whitehouse, 2004):

(1)Ra =
1

L

L

∫
0

|
|z(x)

|
| dx,

F I G U R E  2   Examples of 3D skin surface reconstructions of the dorsum (d) and ventrum (v) of four different snake species illustrating 
the within- and among species variation in skin surface topography. All images are 5.2 × 22 mm with a corresponding elevation profile. 
Phylogenetic relationships among species are shown in a fan tree with node colours indicating species’ habitat use (aquatic: blue; 
arboreal: green; red: terrestrial; yellow: (semi)-fossorial). (top left) Acrochordus granulatus, (top right) Charina bottae, (bottom left) Hydrophis 
cyanocinctus, (bottom right) Lampropeltis getula
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where L is the length of the profile, z is the height coordinate rel-
ative to the profile's mean line, and x is the horizontal coordinate. 
For an x and z coordinate profile composed of discrete points, 
the average surface roughness can be computed numerically as 
follows:

In order to quantify the size and shape of individual surface struc-
tures, the profile must first be segmented to extract the individual 
structures. The QuSTo code segments individual structures in a 2D 
elevation profile using functions that locate the local minimum points; 
Figure 1b shows a profile with four individual skin scales (where the red 
circles indicate minimum points) which are segmented and re-plotted 
in Figure 1c, where the z coordinates of the individual scales are shifted 
so that all the values are positive and have a minimum value of zero. 
The height of the surface structure is defined as the difference in z 
coordinate between the local maximum point and the average of the 
two local minimum points, while the structure length is defined as the 
difference in x coordinate between the structure's first and last points 
(Figure 1c).

The shape of each structure is quantified using two analytical 
techniques: (a) regression with a quadratic function which provides 
the convexity constant (CC) parameter and (b) generation of a statis-
tical distribution based on the structure's 2D profile which is used to 
calculate the skewness and kurtosis. The convexity constant is deter-
mined by fitting a quadratic equation to the portion of the structure 
profile from its beginning to its maximum z coordinate (Figure 1d). 
The CC is the second derivative of the fitted quadratic function, as 
follows:

where z(x) is the quadratic equation fitted to the feature profile and 
the double apostrophe indicates the second derivative. A positive CC 
indicates a concave up shape while a negative CC indicates a concave 
down shape (Figure 3b).

The shape of the segmented structures is also quantified by 
means of the skewness and kurtosis parameters, which theoretically 
describe the shape of statistical distributions. Skewness is a measure 
of a distribution's lack of symmetry (Figure 3b), where a normal dis-
tribution has a value of 0.0. Kurtosis is a measure of the heaviness of 
the distribution's tails (Figure 3b), where a normal distribution has a 
value of 3.0. To determine statistical distributions with shapes that 
mimic those of the segmented structures (in frequency – x coordi-
nate space), each x coordinate value is repeated a number of times 
equal to the corresponding z coordinate. To accomplish this, the z co-
ordinate values must be positive, integer numbers. The z coordinate 
values of each scale are rounded and shifted by an offset so that the 
lowest z value has a value of zero. This process generates distribu-
tions that closely describe the profiles of the segmented structures 
(Figures 1d and 4a–c). Then, the Sk and Ku parameters are calculated 
as follows:

where μ and σ are the mean and standard deviation of the statistical 
distribution respectively.

Calculation of the CC, Sk and Ku parameters is illustrated with 
three idealized surface structures described by a quadratic function, 
a normal distribution and a truncated, inverted lognormal distribu-
tion (Figure 4a–c). The CC parameter takes a value of −200 for the 
quadratic function, indicating that its shape is concave down. Both 
the normal and inverted lognormal distributions have a positive CC 
value. However, the CC for the normal distribution has a greater 
magnitude (237.8) than the lognormal distribution (32.6) because it 
has a stronger concave up shape. Histograms of the statistical dis-
tributions are shown for the three structures, where the quadratic 
function and normal distribution have a skewness close to zero be-
cause they have symmetric shapes. The inverted lognormal distri-
bution has a Sk of −0.45, indicating that it is skewed towards large 
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x coordinate values. Both the quadratic function and the lognormal 
distribution have a Ku of 2.1 while the normal distribution has a value 
of 2.8. The greater Ku for the normal distribution indicates that it is 
more ‘heavy-tailed’ than the quadratic function and lognormal distri-
bution. The Ku value for the normal distribution is slightly lower than 
the theoretical value of 3.0; this difference is due to the rounding of 
the z coordinate values to integers.

For each snake specimen, we obtained up to 32 measurements of 
H, L, CC, Sk and Ku (16 dorsal; 16 ventral) and eight Ra measurements 
(four dorsal; four ventral) using QuSTo. We used these data to per-
form a statistical analysis on the correlation between skin surface 
topography and habitat use of snakes. Repeatability of the imaging 
protocol was statistically significant and relatively high (estimated by 
the intra-class coefficient; Wolak et al., 2012; Table S2).

2.4 | An evolutionary ecological working example

To illustrate the use of our method in an evolutionary ecological 
framework, we tested the hypothesis that snake species inhabiting 

similar environments have evolved similar skin surface structures. 
We used a phylogenetic approach to explore patterns of interspe-
cific variation in skin surface topography by means of the H, L, L/H 
(scale ratio), CC, Sk, Ku and Ra parameters. To do so, we pruned the 
time-calibrated phylogenetic tree constructed by Zheng and Wiens 
(2016) to include only the 32 species under investigation. All analy-
ses were performed in R (R Core Team, 2013).

Based on species average trait values, we used phylogenetic 
generalized least square (PGLS) analyses to first examine the rela-
tionship between body length and the different skin morphology pa-
rameters considered in this study (caper package; Orme et al., 2013). 
We controlled the structure of the phylogenetic signal by optimizing 
the branch length transformations using maximum-likelihood for 
lambda (λ  =  ML) and with kappa and delta set to 1 (κ  =  1, δ =  1). 
Next, we used PGLS analyses to examine the link between species’ 
environment and their skin surface topography parameters. Based 
on information from the literature (Table S1), each species was as-
signed to one of four habitat use classes: arboreal, aquatic, terrestrial 
and (semi-)fossorial. Obviously, snakes are known to be somewhat 
plastic in their habitat use, and some variability within each habitat 

F I G U R E  4   Sample calculation of scale shape parameters. (a) Scales modelled after analytical relationships, including a quadratic equation, 
scaled normal distribution and truncated, inverted lognormal distribution (mean and standard deviation of distributions in parentheses). 
(b) Fitting of scale with quadratic equation, where CC = z(x)″. (c) Histograms created from scale profile data (x coordinate values repeated z 
times) and computed Sk and Ku based on the statistical distributions
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classification is expected. However, the practice of using basic hab-
itat categorizations from the literature is well-accepted (e.g. Hsiang 
et al., 2015; Kulyomina et al., 2019), and these habitat categoriza-
tions can be considered to be estimates of primary habitat use. We 
accounted for the effect of body length (as a covariate) in these 
analyses in cases where body length was significantly related to the 
skin surface variable of interest. All tests were performed for the 
dorsal and ventral skin surface separately. Aside from the adjusted 
R-squared (R2), we report the t- and p-values of the coefficient esti-
mate, and the F-values for models with multilevel factors. As high-
lighted by others (e.g. Baker, 2016; Nuzzo, 2014), the interpretation 
of p-values in statistical analyses should be viewed with caution, 
as there has been an overemphasis of the importance of p-values 
being <0.05 before a trend can be considered worthy of discussion. 
Following recommendations set forth in Dushoff et  al.  (2019), we 
present all statistical tests and p-values and discuss general trends, 
but we do not focus unnecessarily on p < 0.05 as our only metric 
worthy of discussion.

Our phylogenetic comparative analysis showed that overall 
skin surface topography and the shape of surface structures var-
ies greatly among snake species (Figure  5; Table  S1; Figure  S1). 
Variation in individual body length explained a statistically signifi-
cant portion of the observed interspecific variation in scale length 
(dorsal: R2 = 0.59, t = 6.67, p < 0.001; ventral: R2 = 0.58, t = 6.680, 
p < 0.001) and scale height (dorsal: R2 = 0.39, t = 4.53, p < 0.001; 
ventral: R2 = 0.13, t = 2.35, p = 0.026), but not in L/H scale ratio 
(dorsal: t = −1.86, p = 0.074; ventral: t = 0.58, p = 0.569) or in any 
of the scale shape variables (t ≤ 0.26, p > 0.05; Table S3). While our 
analysis showed that the roughness of the ventral skin surface of 
snakes is not body size-dependent (R2 = 0.01, t = 1.19, p = 0.244), 
it did indicate that surface roughness on the dorsum significantly 
increases with snake size (R2 = 0.20, t = 2.95, p = 0.006; Table S3).

Our analyses also indicated that relative (to body size) scale height 
is significantly related to species’ habitat use (dorsal: F3,28 = 4.754, 
p = 0.005; ventral: F3,28 = 3.726, p = 0.015; Tables S3). Specifically, 
ventral scales of arboreal species are proportionally higher than 
fossorial (t = −2.646, p = 0.013) and terrestrial species (t = −2.242, 
p  =  0.033). Moreover, the ventral skin surface of fossorial snakes 
tend be smoother (i.e. lower Ra) than aquatic (t = −2.032, p = 0.052) 
and arboreal snakes (t = −2.010, p = 0.054). Interestingly, while we 
find considerably interspecific variation in the convexity constant, 
skewness and kurtosis of both the ventral and dorsal scales, phy-
logenetically informed analyses indicate no statistically significant 
differences among species using distinct habitats (Tables S3 and S4).

To unravel ecological patterns of skin surface topography and 
scale shape among snake species, our analyses suggest that habi-
tat use may be an important factor driving diversification in scale 
height and skin roughness, but less so in scale shape (convexity, 
skewness and kurtosis). The overall limited support for a strong eco-
morphological relationship may not be surprising, as the evolution 
of skin surface structure in scaled vertebrates is likely influenced 
by a multitude of environmental and social factors, including climate 
conditions (e.g. Sherbrooke et  al.,  2007) predation pressure (e.g. 

Broeckhoven et al., 2018), and intraspecific competition (e.g. Song 
et al., 2011).

3  | DISCUSSION

The 3D reconstruction of structurally complex biological surfaces 
is achievable at high-resolution using various digital techniques, yet 
its quantification often remains challenging due to the lack of free 
and versatile open-source software. We developed QuSTo in order 
to fill this gap. A major benefit of this application is its compatibil-
ity with other tools and methods. QuSTo can process any string of 
data (in .csv format) containing the 2D coordinates of a surface el-
evation profile, allowing researchers to analyse data across length 
scales generated by a range of different visualization techniques, in-
cluding X-ray CT scanning, gel-based stereo-profilometry, laser and 
white light scanning, photogrammetry and even manual surveying. 
This is important because biological surface structures can vary in 
size by orders of magnitude, including nanometre-scale bumps and 
dimples in the cuticle of the arthropod carapace (e.g. Brzozowska 
et al., 2014), micrometer-scale spikes on the barbules of bird feath-
ers (e.g. McCoy et al., 2018), to macrometer-scale patterns in tree 
bark (e.g. Yunus et  al.,  1990). Figure  6 presents an example that 
highlights the versatility of QuSTo. The image shows the photo-
grammetry scan of a lizard tail (model 59B) obtained from www.digit​
allif​e3d.org, a laser scan of a mammoth molar (media ID: 5695) ob-
tained from MorphoSource (www.morph​osour​ce.org), and an X-ray 
CT scan of a gastropod shell (media ID: 40436) also obtained from 
MorphoSource. For these examples, QuSlicer was used to generate 
the 2D profiles and QuSTo was used to obtain the CC, Sk, Ku and 
Ra parameters shown in each of the figures. Another advantage of 
QuSTo is its open-access availability and integrated graphical users 
interface. As such, the software can run on a variety of platforms, 
with the goal of making QuSTo available for biological research, edu-
cation, citizen science projects and non-profit sectors. In addition, 
the source code is publicly available, allowing users and communities 
to modify and expand the current capabilities.

QuSTo is designed to quantify the surface topography of bio-
logical systems so that researchers might gain a better understand-
ing of their diversity and evolution. Biological surfaces are the 
interface between an organism and its environment, and as such, 
they play an important role in a variety of ecologically relevant 
functions such as protection against extreme hydric and thermic 
conditions, thermoregulation, colouration, body cleaning and lo-
comotion (Gorb, 2009). Structural adaptations of the skin surface, 
for instance, enable drag reduction in sharks (Lauder et al., 2016), 
superblack coloration in birds of paradise (McCoy et al., 2018), self-
cleaning in geckos (Hansen & Autumn,  2005), and determine the 
coefficient of friction between biological surfaces and substrates 
(e.g. snakes: Hazel et al., 1999; grasses: Kulić et al., 2009; insects: 
Labonte & Federle, 2015). Surface roughness, and surface feature 
height and length can impact the coefficient of friction between sur-
faces and granular substrates (e.g. Martinez & Frost, 2017; Uesugi & 

http://www.digitallife3d.org
http://www.digitallife3d.org
https://www.morphosource.org
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F I G U R E  5   Interspecific variation in skin surface roughness and scale shape (height, length, L/H ratio, kurtosis, convexity constant, 
skewness) among the 32 snake species of study. Species averages are plotted upon a phylogenetic tree; the different grey-shaded bars 
indicate body region of interest (ventrum, dorsum) and node colour represents species’ general habitat use
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Kishida, 1986) and influence locomotor efficiency in some animals. 
In burrowing sand lances (Ammodytes), for instance, the fish are be-
lieved to select specific environments with a narrow range of parti-
cle sizes that result in an optimal skin scale length to sand particle 
size ratio in order to decrease the drag during sand-diving (Gidmark 
et al., 2011). Interfacial friction experiments by Martinez et al. (2019) 
revealed that artificial snakeskin-inspired surfaces with concave-up 
shaped features (i.e. with a positive CC, Figure 3b) generate greater 
frictional anisotropies (different friction coefficients in different di-
rections) in sand than surfaces with concave down shaped features 
(i.e. with a negative CC). Skewness and kurtosis are parameters that 
have been used to describe the shape of surface features in engineer-
ing and biology (e.g. Wainwright et al., 2017; Whitehouse,  2004). 
For example, Baeckens et al. (2019) showed that the skewness and 
kurtosis of the dorsal scales of Anolis cristatellus lizards scaled with 
body size; intriguingly, no such trend was observed for the ventral 
scales. Scientists of various disciplines are encouraged to use QuSTo 
to study functional variation in the skin surface topography of dif-
ferent species for both fundamental and applied research (e.g. geo-
technical engineering applications: Martinez et al., In Press; O’Hara 
& Martinez, 2020).

Understanding the functional and ecological significance of the 
diversity of skin surface design in snakes has been of interest to both 
biologist and engineers (e.g. Hazel et al., 1999; Marvi et al., 2014; 

Marvi & Hu,  2012). Several studies have already documented the 
basic macro-anatomy of skin surface structure for a large number 
of snake species, primarily from a systematics or a mechanical per-
spective (e.g. Dunson & Robinson, 1976; Jayne, 1988). Recently, the 
micro- and nano-structures that cover the skin surface of snakes 
have also been examined in an evolutionary framework (e.g. Arrigo 
et al., 2019). In contrast, the 3D surface characteristics of reptilian 
skin and its potential diversity among species occupying different 
environments has received limited attention. Our results suggest 
that skin surface roughness and basic topographical aspects of 
surface structure size and shape, such as scale height and surface 
roughness, show some interesting differences among snake spe-
cies with distinct ecologies. One contrast is between arboreal and 
fossorial snakes, of which the former tends to have ventral scales 
with greater height compared to the latter. Previous research sug-
gests that arboreal snakes may use their ventral scales in distinc-
tive ways for climbing (Abdel-Aal,  2018; Jayne et  al.,  2015), yet 
further research is needed to address the functional significance 
of increased ventral scale height and surface roughness for loco-
motion on branches and trees. Our results also show that fossorial 
snake species are equipped with a relatively smooth skin surface 
on their ventrum. Similar findings have been reported from SEM 
images for the burrowing species Aspidelaps scutatus, Eryx jaculus 
and Gonglyophis colubrinus, which carry ventral scales with wide 

F I G U R E  6   Software versatility. Example of how QuSTo can be used to quantify topography of various biological surfaces scanned 
by different 3D scanning methods: (a) Lizard tail segment (Stellagama stellio) digitized using photogrammetry, (b) mammoth molar 
(Mammuthushayi) digitized using a laser scanner, (c) sea snail shell (Lirobittium rugatum) digitized using a CT scanner. The 2D profiles and 
surface structure metrics were generated with QuSlicer and QuSTo respectively. The reported CC, Sk and Ku values are averages from the 
values calculated for the individual surface features while the reported Ra value is obtained from analysis of the entire elevation profile
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denticulations, no keels and oberhautchen cells of limited texture 
(Klein et  al.,  2010; Schmidt & Gorb,  2012). Increased smoothness 
on the ventral skin surface of fossorial limbless vertebrates is pre-
sumably a specialization for reducing friction while moving on or 
through sandy substrate (Gans, 1973; Gans & Baic, 1977). Beyond 
differences in skin roughness and scale height; however, we did not 
find strong ecological correlates with other aspects of skin surface 
topography, as denoted by convexity constant, skewness and kur-
tosis. One explanation for the lack of ecological patterns in mor-
phological variation may be due to the existence of developmental 
constraints (Gould, 1989). Indeed, some features of snake scales are 
so highly phylogenetically conserved that they are used as a taxo-
nomic tool (Price, 1982). Another possible explanation is that differ-
ent skin surface structures may execute the same task equally well 
(many-to-one mapping; Wainwright, 2007) and are effective across 
a wide range of habitats. Clearly, further research is necessary to 
better understand the adaptive significance of the different aspects 
of skin surface topography in snakes.
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